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INTRODUCTION

The Front Range Urban Corridor (referred to as "Corridor"), Colorado,
centered on metropolitan Denver, is one of the fastest growing urban
corridors in the country (fig. 1). Because the area includes a wide range
of bedrock types, surficial deposits, and soils, the distribution and
concentrations of major chemical constituents and trace elements might have
a naturally high variance due to differences in geology. Superimposed on
this natural geologic variability is the effect of anthropogenic additions
of trace elements from the urban environment. The project described in
this report is a study of the geochemistry and spatial variability of soils
in the Corridor. This work is based on systematic sampling of the upper 15
cm of surface soils at 760 sites throughout the Corridor. The study
objectives were, (1) to determine systematically the areal distribution of
element concentrations at the interface between man and his solid
environment in such a way that the concentrations can be shown on synoptic
maps; (2) to provide a geochemical baseline so that future changes in
levels of elements can be determined as a measure of the contributions from
pollution and agricultural practices; (3) to provide a basis for comparison
of element distribution with health conditions; and (4) to lead to a better
understanding of the processes by which elements are redistributed in this
urban area as well as in the general geochemical cycle.

The Corridor project began with a pilot study based on the Longmont
area (Tourtelot, 1973; Tourtelot and Miesch, 1975). The findings of the
pilot study were used to design a much larger study including the whole
Corridor. As data from this larger study became available, they were
discussed and interpreted (Tourtelot, 1975, 1977; Tourtelot and Neiman,
1974) . These data from the larger Corridor study are included in this
report without further citation. Data from the Longmont area pilot study
are not included here.

Much of the Corridor was farm and pasture land when the study was
conducted in the 1970's. Urbanization and industrialization has occurred
at increasing rates over the last several decades. The soil geochemistry
data collected in this study are suitable for estimating the geochemical
effects of a large urban city relative to baseline composition of soil in
relatively undisturbed settings. In addition, the data gathered in the
1970's provide a baseline against which future geochemical changes can be
measured.

A systematic sampling of surface soils (0-15 cm depth) from the
Corridor (fig. 1) was planned and conducted during 1971-1976. A total of
780 samples were collected. Sample sites were selected by using a square
grid pattern and incorporating an analysis-of-variance design. The
geochemical composition (42 elements, plus 3 carbon forms) of the soils was
determined, and these data were used to meet the objectives of the study.

Contour maps representing an element's concentration in soil can be
prepared at any scale by collecting samples on a grid appropriate for that
scale. However, there are no assurances that a contour map prepared in
this manner will reliably represent the true geochemical patterns of the
landscape. Analysis-of-variance can be used to measure the magnitude and
distribution of natural variability that exists at various geographic
scales. From the variance components it is possible to estimate the



feasibility of preparing geochemical maps of element distributions of known
reliability in soils at various geographic scales. Feasibility is defined
by the requirement to focus sampling at those geographic scales where the
largest amount of variance occurs consistent with a practical ability to
collect and analyze the minimum number of random samples required in each
cell of a specified size. Thus, it is feasible to prepare contour maps of
element concentration in soils of the Corridor based on the data already
collected.

METHODS
Sampling Design

The sampling plan is diagrammed in fig. 2. The Corridor was divided
into four zones based on geology (compare figs. 1 and 2). A grid
consisting of 8 by 8 km squares (64 km?) was used to partition the Corridor
into cells. The sampling area within each square grid consisted of the
central 4 by 4 km square (16 kmz). The actual area sampled amounted to
one-fourth of the grid; however, because random sampling was used, the data
are representative of the entire area. Each 16 km?2 square sampling area
was divided into quarters, and two of these were chosen by random
procedures to form sample localities. Within each locality, two sample
sites were chosen randomly. Each sample site is defined as a 50 by 50 m
square, and two samples were taken at random within the site and combined
to make a single composite sample. The samples from 70 sites were not
combined but were analyzed separately so that variation in composition at
this small scale could be estimated.

General sampling locations for the study were determined with the aid
of U.S. Geological Survey 1:24,000 scale topographic maps. All sampling
sites were selected on topographic maps before going into the field. The
target sample population was defined as a composite sample of soil and
surficial material from the top 15 cm that could be collected with a hand
shovel. This eliminated hard-rock outcrops, asphalt paving, and lakes.

The sampling objective was to collect samples whose composition would
describe the geochemical variation over the large area of the Corridor as a
whole. Consequently, sample sites were accepted as they had been
determined in advance, depending somewhat upon any problems of access that
occurred in the field. Sampling sites fell along roads and highways, in
cultivated fields, pasture lands, city parks, and the front yards of
residences in cities and towns.

Sstatistical Techniques

Anaysis-of-Variance

A six-level, unbalanced, nested, analysis-of-variance (AOV) design
was built into the study. This statistical design allows the partitioning
of the total measured natural variation into components (table 1). The
first component (zones) is related to geology, and the next four components
are related to the various sampling cell sizes of areas, localities, sites,
and samples (fig. 2). 1In addition, 15 samples were chosen at random and
split into two parts and each part analyzed independently. This duplicate
analysis of samples represents the sixth level of the design and gives a



component estimating all procedural errors, including field sampling,
sample preparation, and sample analysis.

A further precaution was taken to convert any systematic error, which
might occur in either sampling or analysis, into random errors. This was
accomplished by analyzing all samples (original and duplicate samples) in a
randomized sequence so that any geographic trend in the data was not
confounded by any possible analytical trend.

Statistical analyses require complete numeric data sets. Some
elements were reported as being below the lower limit of determination
(censored data) of the analytical method (table 2). These elements are
identified in table 3 as having detection ratios of <712:712. Where more
that 25 percent (<534:712) of the determinations were below detection
(silver, boron, carbonate-carbon, cerium, chlorine, fluorine, molybdenum,
niobium, neodymium, phosphorus oxide, and total sulfur) the observed ranges
are presented in table 3 but the elements are omitted from further
interpretation. Otherwise, the censored values were replaced with
arbitrary values equal to 70 percent of their lower limit of determination.
The replacement values are justified because their small number neither
alters the statistical tests nor affects the interpretation of the data.
For the elements with censored distributions, the geometric means and
deviations were estimated by the technique of Cohen (1959) for singly
truncated distributions.

Relative imprecision, as indicated by the percentage of variation due
to procedural error (table 1), is considered excessive when it exceeds 50
percent. Natural landscape variation for germanium, antimony, selenium,
and tin is dominated (greater than 50 percent) by variation owing to field
and laboratory procedural errors. Summary statistics are presented (table
3), but no further interpretations are made for these elements.

Variance Ratios and Mapping Requirements

The variance-mean ratio (Vm) (Miesch, 1976) is computed from
estimates of variance components associated with sampling cell sizes
described above. The Vm provides an index of relative stability of mean
values used to construct geochemical maps. Vm values computed for
different cell sizes are useful for evaluating the feasibility of mapping
the distribution of an element at those different size cells. For example,
Vm values for areas would be computed as follows:

2 2
s + s
zone area
VM = mmmm e m e e e e -
2 2 2 2
n . s +n S _ +n s +n s
locality locality site site sample sample error error

where the numerator is the sum of the variance components (52) for zones
and areas and the denominator is the sum of the variance components (52)
multiplied by the average number of samples (n) collected within each
smaller sampling interval, plus estimates of procedural errors. In other
words, the numerator is the variance between sampling areas, and the



denominator is the variance within sampling areas adjusted for the numbers
of samples collected within sampling areas. A Vm equal to 1.0 is
approximately equivalent to an F-test at a probability level of 80 percent.
Taking a Vm equal to 1.0 as a threshold, for values less than 1.0 we judge
that a map of element concentration prepared from the existing data, at the
sampling interval indicated in the numerator of the equation above, tends
not to faithfully reproduce the true geochemical pattern (Miesch, 1976, p.
102). As Vm increases, the map pattern increasingly reflects the true
geochemical pattern. Mean values for areas for all remaining elements and
compounds except aluminum oxide can be used to prepare stable geochemical
maps (table 4) because their Vm values exceed the 1.0 threshold value.
Variation between zones, areas, localities, or sites may be mapped by
using sampling unit averages, if enough samples are collected at random
within each sampling unit to produce a stable average. The minimum number
of random samples (n,) required within a sampling unit can be calculated
from the analysis of variance data. A variance ratio (v) defines the
variance measured between sampling units compared to the variance measured
within sampling units (Miesch, 1976). The minimum number of samples to
collect from within each sampling unit is defined by the equation:
F=14+n.v
where n, is adjusted so that the sum (1 + n,v) exceeds the critical F-
statistic (F) at a chosen confidence interval with 1 and 2n, - 2 degrees of
freedom. Minimum numbers of random samples needed to prepare stable
geochemical maps at the 80 percent and 95 percent probability levels, based
on area means, are shown in table 4.

Laboratory Methods

All soil samples were dried under forced air at ambient temperature.
The dry samples were disaggregated using a mechanical ceramic mortar and
pestle, sieved to minus 10 mesh (2 mm), and a split of the minus 2-mm
material was ground to minus 100 mesh (0.15 mm). The minus 100-mesh
material was used for all chemical analysis.

Chemical analyses were performed by two main techniques, optical
emission spectroscopy (OES) and X-ray fluorescence spectrometry (XRF).
Additional determinations were performed by atomic absorption spectrometry
(AAS), ion selective electrode, and gasometric procedures.

Samples were analyzed simultaneously for about 60 elements using OES.
This method provides data routinely for about 20 elements. The other
elements looked for are typically at or near the detection limit in most
soil samples. The results are semigquantitative-they are reported in six
geonmetric steps per order of magnitude. A detailed discussion of the
method is provided by Neiman (1976).

X-ray fluorescence spectrometry was used to analyze soil samples for
major elements as well as selected trace elements. A detailed discussion
of the method is provided by Wahlberg (1976).

Huffman and Dinnin (1976) provide descriptions of the methods used to
determine selected elements by AAS, ion selective electrode, and other
techniques.



RESULTS
Baselines and Variability

The elements or elements reported as compounds that were detected in
the surface soil samples are summarized in table 3 by their detection
ratio, geometric mean and deviation, baseline range, and observed range. A
listing of the results of analysis for 845 surface soil samples from 190
areas is given in appendix table Al, including results of analysis for the
additional 70 uncomposited site samples collected to determine sample
variance and results of analysis for the additional 15 laboratory duplicate
splits. The baseline range, as defined by Tidball and Ebens (1976), is
computed as the expected 95-percent range of the distribution of values
measured in samples from this study. This means that if a new soil sample
was to be collected in the Corridor and analyzed for some element, there is
only a 1-in-20 chance that the determined value for that element would be
outside of this range. The observed range is the lowest and highest values
measured.

These summary statistics on the composition of soils provide an
overview of their geochemistry. The information is useful for making
comparisons with the geochemistry of soils from other areas to determine,
on a gross scale, whether these soils are typical or unusual in their
chemical composition. However, this study was designed to provide, in
addition to this general geochemical overview, information about the
distributions of elements in soils across the landscape and possible
anthropogenic additions of trace elements from urban areas.

Landscape distribution patterns of elements may represent naturally
occurring concentrations in soil or technological additions. These
concentrations are not necessarily in equilibrium with the environment.

The values measured in this study represent the natural concentration plus
any anthropogenic additions, minus amounts removed by leaching or other
removal processes. Element retention in, or removal from, soil is wvariable
depending on the geochemistry of the specific element and the specific
physical and chemical characteristics of the soil and its weathering
environment. Soil properties that affect the retention of elements are the
amount and types of clay, the amount of organic matter, the amount of iron
and manganese oxides, the soil pH, and the oxidation-reduction state of the
soil. Physical characteristics such as porosity, permeability, position on
a slope, and erosion rates also affect the concentration, the retention,
and the leaching of elements. The major purposes for collecting samples
based on an analysis-of-variance design were to determine the amount of
natural plus anthropogenic variability that exists at various geographic
scales and to interpret possible geochemical origins from the observed
variation.

Geochemical maps for element concentrations in soils, based on
geometric means for area sampling units, are given in figs. 3-1 to 3-30.
For elements with a Vm greater than 1.0, five contour intervals are
represented by the geometric mean for all samples and the upper and lower
boundaries for the 68 percent and 95 percent boundaries of a log-normal
distribution. The 68 percent range is computed as GM/GD to GM X GD, and
the 95 percent range is GM/GD2 to GM X GDZ, where GM is the geometric mean
and GD is the geometric deviation (fig. 3 caption). The baseline range is



computed as the expected range as defined by Tidball and Ebens (1976). The
distributions of variance components (table 1) and the maps showing element
distributions (fig. 3) indicate that the element concentrations in these
soils are, on the average, relatively uniform over the study area, but the
samples collected at very close sampling intervals are as variable as those
collected over large distance increments.

Patterns Related to Geology

The sample site and generalized geologic map (figs. 1 and 2) show
that samples were collected in each of the geologic units. The number of
samples collected within each geologic unit is roughly proportional to the
area each unit occupies. The geology in fig. 1 is greatly simplified. The
Corridor is bordered on the west by the mountains of the Front Range, made
up of metamorphic and igneous rocks in which a variety of metallic mineral
deposits occur. These are the oldest rocks in the study area. The
mountains are fringed by a narrow boarder of sedimentary rocks that take
the form of "hogbacks." The northern and southern parts of the Corridor
are underlain by marine shale, which typically contain larger amounts of
trace elements than other types of rocks, with the exception of rocks that
host metallic mineral deposits. This marine shale is covered by non-marine
sedimentary rocks, which, in the northern part of the Corridor, contain
coal beds. The non-marine rocks between Denver and Colorado Springs are
composed mainly of debris eroded from the mountains to the west and also
contain some materials of volcanic origin. Most of the Corridor, but
particularly the northern half, is mantled with surficial deposits of sand,
gravel, and wind deposited loess. Stream valleys and low stream terraces
throughout the Corridor are filled with alluvium and make up much of the
better agricultural land of the area.

The geochemical composition of soils and other nontransported surface
materials is derived primarily from the composition of the underlying
bedrock. Factor analysis in the R-mode was performed using a varimax
solution. Correlations between the sample scores and the variables are
presented in table 5. Factor analysis was used as an aid in interpreting
the relationship among elements and their spatial relation to geology.
Elements grouping on factor one (table 5) are typical of mafic rocks. The
highest concentrations of these elements tend to be associated with areas
defined in fig. 2 as the northern half of zone one and zone two. Factor
two (table 5) element groupings suggest felsic rock compositions. The
highest concentrations for these elements correspond to the areas defined
in fig. 2 as the southern half of zone one and zone four. Factor three
(table 5) elements represent urban influences and are discussed in a
subsequent section of this report. Elements associated with factor four
(table 5) show their highest concentrations within small areas confined
mainly to zone one (fig. 2). This element association suggests rocks of
ultramafic composition; however, this factor actually represents a few
sample locations that contained soils collected from moist locations that
were high in organic matter. Factor five (table 5) element associations
represent marine sediments of Cretaceous age and their highest
concentrations are located in zone two (fig. 2). Zone three (fig. 2)
contains mainly eolian transported sediments and samples collected from



this area contain small concentrations of most elements. Samples collected
from zone 4 (fig. 2) are most closely related to factor 2 (table 5).

Total carbon (fig. 3-5) and organic carbon (fig. 3-6) exhibit similar
patterns. Nearly all of the carbon is in an organic rather than inorganic
form. The map pattern shows an increase in carbon from east to west, and
probably reflects a climatic gradient, rather than geologic or urban
controls. Geologic or urban influences are not apparent for either form of
carbon.

Patterns Related to Urban Influence

Copper is an element that is relatively concentrated in marine shale
and can also occur as an accessory element in minerals of igneous and
metamorphic rocks of the mountains. A few of the larger area means for
copper occur in the marine shale areas in both the north and south ends of
the Corridor (fig. 3-10). The smaller area means coincide with the non-
marine geologic units. These patterns suggest a geologic control on copper
distribution. However, the landscape distribution for copper also shows a
prominent cluster of large area means overlying metropolitan Denver.
Additionally, a linear pattern of large area means extends downstream in
the South Platte River valley north of Denver. The cluster of large area
means in Denver and up the South Platte River Valley departs from patterns
expected based on geologic control. This pattern probably reflect
technological inputs of copper.

Zinc is an element with similar geologic controls as copper and
nickel (see the discussion for copper). These controls are reflected in
it's landscape distribution (fig. 3-29). There also appears to be a
significant technological source for zinc because the pattern of large area
means for Denver, Colorado Springs, and the South Platte River mimic those
for lead (fig. 3-21). Zinc has a technological source that is diffused
into the general technological activities of an urban area.

Arsenic (fig. 3-2) is expected to be associated with marine shales.
The landscape pattern of large area means also suggests that arsenic is
added by technology because of the large area means for the Colorado
Springs, Denver, and South Platte River areas.

Lead is an element that is not highly concentrated in any of the rock
types that occur in the Corridor. A deochemical map showing the natural
distribution of lead would be expected to show only a random pattern. The
lead distribution (fig. 3-21) pattern is distinct with the largest area
means clustered in metropolitan Denver and along the South Platte River.
The southern-most cluster of high area means coincides with the city of
Colorado Springs, where the soils in the downtown park contains as much as
700 parts per million. Some large area means appear to be associated with
the interstate highway north of Colorado Springs, but similar patterns do
not appear around Denver because the interstate highway was not close to
any sampling locations in this area. The technological source for lead is
probably largely related to lead-based paint, smelting, and leaded
gasoline.

Mercury, like lead, should have little or no geologic control in the
Corridor. The similar patterns for mercury (fig. 3-13) with copper, lead,
and zinc indicate that large area means are associated with technology.



Source, transport, deposition, and accumulation processes for mercury
follows the same pattern as for copper, lead, and zinc.

Environmentally Important but Non-mappable Elements

Molybdenum and silver had very few reported values above the lower
detection limit (table 3). Because these are environmentally important
elements, point plots of detected values are given in figs. 4-2 and 4-4.
Most of the detectable molybdenum values (fig. 4-2) are associated with the
marine formations of Cretaceous age (fig. 1). Some of the highest wvalues
coincide with Denver and the Platte River valley. Both geologic and urban
sources may be responsible for its distribution patterns. Silver (fig. 4-
4) appears to be definitely associated with urban influences. The detected
values for silver coincide with Denver and follow the Platte River valley.

Area means for other environmentally important elements (antimony,
selenium, and tin) that exhibited excessive procedural error (table 1) are
included as figs. 4-1, 4-3, and 4-5. The geochemical patterns displayed on
these maps are probably not stable, and any interpretations should be
considered very generalized and speculative. The higher cell means for
selenium (fig. 4-3) occur at the extreme north and south ends of the study
area. They coincide with Cretaceous marine shales and suggest a geologic
influence. Selenium values surrounding urban areas or dispersion patterns
from urban areas do not show elevated concentrations. Selenium is
speculated to be unrelated to urban activities. The higher values for
antimony (fig. 4-1) and tin (fig. 4-5) appear within urban areas, but the
values do not follow the dispersion pattern along the Platte River as do
some other elements. It is speculated that these elements may be
associated with urban influences, but they are not as susceptible to
transport as are many other elements. No patterns between geology and
element distribution are apparent; however, procedural errors may obscure
any true patterns.
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Figure 3 Explanation.

The contour map on the left side of the page was constructed based on
geometric means for samples within each of the 190 sampling areas.
Contouring was done by an inverse-distance algorithm and averaging the four
nearest neighbors. Five contour intervals are represented by the geometric
mean for all samples, and the upper and lower boundaries for the 68 percent
and 95 percent boundaries of a log-normal distribution. The 68 percent
range is computed as GM/GD to GM X GD, and the 95 percent range is GM/GD
to GM X GD2, where GM is the geometric mean and GD is the geometric
deviation (table 3).

The figure on the right side of the page contains the cell means used
in constructing the contour maps.

Contour intervals

Variable 95% 68% GM 68% 95%
Al,05, % 6.1 8.1 10.7 14.2 18.6
As, ppm 0.6 1.4 3.5 8.8 22
Ba, ppm 450 630 890 1300 1800
Be, ppm 0.5 0.8 1.2 1.90 2.80
C, total, % 0.39 0.75 1.42 2.70 5.13
C, organic, % 0.33 0.64 1.26 2.48 4.89
CaO, % 0.21 0.49 1.16 2.73 6.41
Co, ppm 0.30 1.2 4 14 47
Cr, ppm 7.2 15 31 64 130
Cu, ppnm 2.3 5.4 13 31 74
Fey03, % 0.96 1.73 3.09 5.53 9.9
Ga, ppmn 9.3 12 16 21 27
Hg, ppm 0.006 0.012 0.024 0.049 0.099
K50, % 1.4 2.07 3.06 4.53 6.70
La, ppm 2 8 37 160 690
Li, ppm 7.7 12 20 32 52
Mgo, % 0.16 0.32 0.68 1.45 3.09
Mn, ppm 90 160 280 490 850
Na,0, % 0.43 0.71 1.17 1.93 3.19
Ni, ppm 0.36 1.6 6.8 30 130
Pb, ppm 9.7 18 35 67 130
Sc, ppm 0.7 2.1 6.1 18 52
Sio,, % 53 60 68 76 86
Sr, ppm 85 150 270 480 860
TiO,y, % 0.097 0.14 0.21 0.31 0.45
V, ppm 18 35 68 130 260

Y, ppm 8.3 15 26 46 81
Yb, ppm 0.8 1.5 2.8 5.3 10
Zn, ppm 21 36 63 110 190
Zr, ppm 78 125 200 320 510

13
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Aluminum oxide.
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Figure 3—2. Arsenic.
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Figure 3—3. Barium.
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Figure 3—4. Beryllium.
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Figure 3—5. Total carbon.
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Figure 3—6. Organic carbon.
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Figure 3—7
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Calcium oxide..
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Figure 3—8. Cobalt.
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Figure 3-—9.
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Chromium.
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Figure 3—10. Copper.
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Figure 3—11. lron oxide.
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Figure 3—12. Gallium.
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Figure 3—13. Mercury.
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Figure 3—14. Potassium oxide.
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Figure 3—15.
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Lanthanum.
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Figure 3—16. Lithium.
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Figure 3—17. Magnesium
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Figure 3—18. Manganese.

-

A

S

488 622 221 154 187 183 245 200
186
341 341 mn 31s 186 186 200 221 192
589 300 b1 245 398 p>1) 221 233|
308 287 188 210 221 245 210 288
221 208 mn 200 289 221 217 208
248 185 258 7 300 387 200 186
1% 259 341 192 245 308 150 138
3s0 36 27 251 192 398 16 122
338 221 282 f24) 499 387 186 308
521 200 200 285 387 344 108 173
308 344 271 297 440 251 221 228 207
398 282 300 328 387 328 448 207 324
388 1Hes 568 341 381 21 342 562
387
871 308 544 837 228 72 544 245
459 481 245 341 37% 544 192 473 344
521
480 162 173 595 544 241 206
221

381 308 308 112 278 173 218
602 704 175 167 252 146 257
282 228 245 181
218 173 188 289
789 320 236 192
847 308 196 Eri
126 140 316
127 112 120 185
25¢ 495 229
341 167 308
749 188 303
41 338 300

e

234




Figure 3—19. Sodium oxide.
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Figure 3—20. Nickel.
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Figure 3—21. Lead.
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Figure 3—22. Scandium.
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Figure 3—23. Silicon oxide.
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Figure 3—24. Strontium.
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Figure 3—25. Titanium.

-

0.30 0.38 .20 0.14 0.19 0.1% 017 0.18
0.17
0.35 0.23 021 0.28 0.18 o.1¢ 0.17 0.18 0.18|
0.24 0.23 0.19 0.23 0.21 0.23 0.19 0.19]
o.1¢
0.28 0.23 0.17 0.20 0.22 0.17 o.18 0.17]
0.28 0.1¢ 0.18 0.22 0.24 0.20 0.18 0.15
0.17 0.18 0.19 0.27 0.22 0.30 0.18 0.14
0.14 0.22 0.28 0.20 022 0.19 .14 0.13
0.17 0.20 0.25 0.20 0.18 0.24 0.14 0.13
0.2 0.20 o.18 0.20 0.29 0.30 .18 0.21
0.32 0.19 0.24 0.28 0.22 0.22 0.10 0.14
0.21 0.21 0.22 0.21 0.24 0.18 0.16 0.13 0.23
0.23 0.21 0.22 0.23 0.19 0.21 0.21 0.27 0.24
0.24 048 0.22 0.21 0.24 0.13 0.25 0.29
0.24 0.20
o3 0.3t 0.30 0.44 0.17 0.18 0.27 o.13
0.22 0.17 0.19 0.24 0.35 0.34 0.18 0.25 0.23
0.24
0.28 0.15 0.18 0.34 0.34 0.17 o0.1¢
.17

0.31 0.22 0.24 0.17 0.29 0.18 0.17
028 0.27 o.19 0.18 0.31 0.12 0.23
0.24 0.1s 0.24 0.20
0.18 0.23 0.22 0.21
0.22 0.21 0.1¢ 0.16
.31 o.1¢ 0.18 0.36
0.14 .14 0.17
0.110.09 0.12 0.17
0.14 0.35 0.17
0.17 0.18 0.23
0.48 0.15 0.24
0.38 0.24 0.27

0.33




Figure 3—26.
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Figure 3—27. Yttrium.
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Figure 3—28. Ytterbium.
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Figure 3—29. Zinc.
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Figure 3—30. Zirconium.
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Figure 4 Explanation.

Figure 4 displays environmentally important but non-mappable
elements. Maps display geometric means for samples within 4km cells for
antimony, selenium, and tin. These maps are not countoured because Sb, Se,
and Sn exhibited excessive procedural error (table 3). Point plots of
individual data points are displayed for molybdenum and silver because very
few values were reported above the lower detection limit (table 2).
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Figure 4—1. Antimony.
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